case-kの備忘録

日々の備忘録です。データ分析とか基盤系に興味あります。

2018-08-01から1ヶ月間の記事一覧

ランダムフォレストで癌の良性・悪性を分類予測してみた

ランダムフォレストで癌の良性・悪性を分類分類予測してみました。以前にChainerで同様の癌の分類問題を行ったので、比較してみたいと思います。 ランダムフォレストとは ランダムフォレストのメリット・デメリット メリット デメリット 実装編 ランダムフォ…

Pythonで学ぶポアソン分布とは

代表的確率分布の一つである、ポアソン分布について記事を書きました。ポアソン分布の概要や実際の例題を解きながら理解を深めていきたいと思います。 ポアソン分布とは 例題 二項分布とポアソン分布の関係 ポアソン分布とは 「単位時間あたりに平均 λ 回起…

Chainerで癌の良性・悪性を分類予測してみた

Chainerで癌の良性・悪性の分類予測を試してみたいと思います。 Chainerとは Chainerのメリット Chainer構造理解 実装編 Chainerで計算できるデータ形式に変換 Chainerで使用するデータセットの形式 モデルの定義 モデルの定義 Optimizerの定義 Iteratorの定…

Pythonで学ぶ標準化とは

異なるグループ間の比較方法として「標準化」と呼ばれる統計的手法があります。同じテストの結果を比較することはは容易ですが、異なる科目のテスト結果の比較は点数だけでは判断できません。このような場合「標準化」は有益です。今回は「標準化」の関連用…

Pythonで学ぶ二項分布と正規分布の関係性

代表的な確率分布として正規分布や二項分布、ポアソン分布があります。本記事では二項分布と正規分布の関係性について、実際にPythonで例題を解きながら理解していきたいと思います。二項分布については以下よりご確認ください。 case-k.hatenablog.com この…

Pythonで学ぶ二項分布とは

代表的確率分布の1つである二項分布について、実際にPythonで例題を解きながら理解したいと思います。 この記事の目的 二項分布とは ベルヌーイ試行とは ベルヌーイ分布に従う場合の確率・期待値・分散 活用用途 例題 例題 (1) 例題 (2) 例題 (3) この記事の…

ニューラルネットワークについて

今回はニューラルネットワークの概念を理解し、Pythonでニューラルネットワーク構造を実装し理解したいと思います。 本記事の目的 ニューラルネットワークとは ニューラルネットワークの活用用途 ニューラルネットワークの学習方法 誤差伝播法の概念 実装編 …